Система управления самолетом назначение работа. Элементы конструкции самолета

Регистрация ИП 07.12.2022
Регистрация ИП
0

Системы управления самолетом разделяются на основные и вспомогательные. К основным принято относить системы управления рулем высоты, рулем направления и элеронами (рулями крепа). Вспомогательное управление - управление двигателями, триммерами рулей, средствами механизации крыла, шасси, тормозами и т. д.

Любая из основных систем управления состоит из командных рычагов управления и проводки, связывающей эти рычаги с рулями. Рычаги управления отклоняются ногами и руками пилота. При помощи штурвальной колонки или ручки управления, перемещаемой усилием руки, пилот управляет рулем высоты и элеронами. Управление рулем направления осуществляется при помощи ножных педалей.

Конструкция управления предусматривает, чтобы отклонение командных рычагов, а следовательно, и изменение положения самолета в пространстве соответствовало естественным рефлексам человека.

Например, движение вперед правой ноги, действующей на педаль, вызывает отклонение руля направления и самолета вправо, перемещение штурвальной колонки вперед от себя вызывает снижение самолета и увеличение скорости полета и т. д.

Для облегчения пилотирования и повышения безопасности полета при продолжительном полете управление большинства гражданских самолетов и, прежде всего, многодвигательных делается двойным. В этом случае систему командных рычагов делают сдвоенной - две пары педалей, две штурвальные колонки или ручки, которые связаны между собой так, что отклонение рычага первого пилота вызывает такое же отклонение рычагов второго пилота.

Система управления самолетов, предназначенных для длительных полетов, снабжается автопилотом, который облегчает пилотирование, автоматически выдерживая заданный режим полета. Для уменьшения нагрузок, действующих на рычаги управления при отклонении рулей современных тяжелых и скоростных самолетов, в систему управления включают гидравлические или электрические механизмы, называемые усилителями (бустерами). В этом случае пилот управляет усилителями, которые в свою очередь отклоняют Рули.

Управление летательных аппаратов, совершающих полеты на больших высотах и в сильно разреженной атмосфере, а также аппаратов вертикального взлета и посадки, когда аэродинамические силы, действующие на самолет, ничтожны и обычные аэродинамические рули неэффективны, осуществляется с помощью струйных или газовых рулей, дефлекторов и отклоняющихся двигателей.

Струйные рули представляют собой реактивные сопла, к которым подводится сжатый воздух от специальных баллонов или от компрессоров двигателя. Управляющими силами в этом случае являются реактивные силы, возникающие в каждом сопле при истечении из него сжатого воздуха.

Газовые рули имеют форму обычного аэродинамического руля, установленного в струе газов, вытекающих из сопла реактивного двигателя. Большая скорость истечения газов позволяет получить значительные силы при сравнительно небольшой площади рулей. Так как рули омываются газами, имеющими высокую температуру, то материалом для их изготовления могут служить графит или керамика. Дефлектор представляет собой устройство, отклоняющее реактивную струю газов. Изменение направления тяги двигателя путем поворота всей двигательной установки требует громоздких и сложных устройств, обладающих большим весом и инерционностью. Привод перечисленных выше рулевых устройств может быть гидравлическим, электрическим и пневматическим.

Конструкция элементов системы управления

Командные рычаги управления. Управление рулем высоты и элеронами производится при помощи ручки управления или штурвальной колонки. Ручка (рис. 64) представляет собой


вертикальный неравноплечий рычаг, расположенный перед пилотом и имеющий две степени свободы, т. е. способный поворачиваться вокруг двух взаимно перпендикулярных осей. При движении ручки вперед и назад отклоняются рули высоты, при перемещении ручки влево и вправо (поворот вокруг оси а - а) отклоняются элероны. Независимость действия руля высоты и элеронов достигается размещением шарнира О на оси а - а.

На тяжелых самолетах вследствие большой площади рулей высоты и элеронов увеличиваются нагрузки, потребные для отклонения рулей. В этом случае самолетом удобнее управлять с помощью штурвальной колонки, которая, как правило, выполняется двойной. На рис. 65 изображена штурвальная колонка управления самолетом. Подобных колонок на самолете две: одной управляет командир корабля, другой - второй пилот. Каждая колонка состоит из дюралюминиевой трубы, головки штурвала и нижнего узла - опоры штурвальной колонки, в торцах которого заделаны шарикоподшипники. В нижней части колонки имеется рычаг, к которому присоединяются тяги управления рулем высоты.


Тяги управления элеронами соединены с качалками, установленными на кронштейнах. На каждом штурвале имеются кнопки управления связной радиостанции, включения и отключения автопилота и нажимной переключатель управления триммером руля высоты.

Для управления рулем направления предназначены педали, которые бывают двух типов: перемещающиеся в горизонтальной плоскости и перемещающиеся в вертикальной плоскости. При горизонтальном перемещении педали движутся по прямолинейным направляющим или на шарнирном параллелограмме, собранном из стальных тонкостенных труб.

Параллелограмм обеспечивает прямолинейное перемещение педалей без их поворота, что необходимо для удобного и неутомительного положения ступни ноги пилота.

Педали, перемещающиеся в вертикальной плоскости, имеют верхнюю или нижнюю подвеску. Положение педалей можно регулировать, подгоняя под рост пилота. На рис. 66 изображен пульт ножного управления, который состоит из трех щек 1, между которыми на штангах 2, соединенных с трубой 8, подвешены педали 4. Каждая педаль специальным пальцем 6, проходящим внутри оси педали, связана с секторной качалкой 5. Верхняя часть секторных качалок тягами 9 и 10 соединена с рычагами горизонтальной трубы 7. На трубе закреплен рычаг 11, к которому присоединяется тяга 12, идущая к рулю поворота. При нажатии, например, на левую педаль (от пилота) повернется секторная качалка 5, которая через тягу 9 вызовет поворот трубы 7 против часовой стрелки. Это движение в свою очередь через тягу 10 вызовет поворот секторной качалки правой педали в противоположную сторону, т. е. назад к пилоту. Пальцы служат для регулировки педалей по росту пилота. Регулирование производится следующим образом: пилот отжимает вбок рычаг защелки 3 и тем самым выводит палец 6 из зацепления с сектором 5. Пружина (на рисунке не показана) поворачивает педаль в сторону пилота.

Проводка управления, как уже указывалось, может быть гибкой (рис. 67, а), жесткой (рис. 67, б) либо смешанной.

Гибкая проводка управления выполняется из тонких стальных тросов, диаметр которых выбирается в зависимости от действующей нагрузки и не превышает 8 мм. Так как тросы могут работать только на растяжение, то управление рулями в таком случае выполняется по двухпроводной схеме. Отдельные участки тросов соединяются при помощи тандеров. Трос к тандерам и секторам крепится посредством коушей и запрессовок (рис. 68). Для уменьшения провисания тросов на прямолинейных участках служат обычно текстолитовые направляющие, в местах перегиба троса устанавливаются ролики с шариковыми подшипниками.

Жесткая проводка представляет собой систему жестких тяг и качалок. Качалки являются промежуточными опорами проводки, которые необходимы для деления тяг на сравнительно короткие участки. Чем короче тяга, тем большее усилие сжатия она может воспринять. С другой стороны, чем больше разъемов у тяг, тем больше вес проводки.

Тяги имеют трубчатое сечение, изготавливаются из дюралюминия и реже из стали. Соединение тяг между собой, а также с качалками осуществляется через наконечники с одним или двумя ушками, в которых вмонтированы шарикоподшипники, допускающие перекос между осями тяг. Отдельные наконечники имеют резьбу для возможной регулировки длины проводки. Для повышения надежности управления каждая тяга выполняется иногда из двух труб, вставленных одна в другую. Основной трубой является наружная, но каждая труба в отдельности может полностью воспринять всю расчетную нагрузку, приходящуюся на эту тягу.

Системы управления с усилителями

С увеличением скоростей, размеров и веса самолетов нагрузки на поверхности управления увеличиваются. Однако эти усилия ограничиваются физическими возможностями пилота и не должны превышать определенных величин, так как могут вызывать усталость при длительном полете в сложных метеоусловиях. Кроме того, при больших усилиях на органах управления (командных рычагах) пилот не может действовать достаточно быстро, что ухудшает маневренность самолета. Утвердилось мнение, что мощная аэродинамическая компенсация и, следовательно, ручное управление, т. е. управление без усилителей самолетом, возможны только при скоростях полета, соответствующих числу М не больше 0,9.

Отказ от использования воздушного потока для уменьшения нагрузок на органы управления (командные рычаги) пилота потребовал установки на самолете достаточно мощного источника вспомогательной энергии. Таким источником в большинстве случаев является самолетная гидросистема, приспособленная для питания бустеров (гидроусилителей), включенных в систему управления самолетом.

С появлением управления, имеющего гидроусилители, отпали трудности, связанные с аэродинамической компенсацией рулей. Отработка системы с гидроусилителями почти не требует летных испытаний и производится полностью на наземных стендах, что дает большую экономию времени и средств. Значительно упрощается применение автопилотов, так как при наличии в системе гидроусилителей можно уменьшить мощность рулевых машинок.

Некоторые конструкции гидроусилителей дают возможность уменьшить и даже полностью устранить весовую балансировку рулей. Однако применение бустеров утяжеляет конструкцию самолета.

В настоящее время применяются две разновидности гидроусилителей: необратимые и обратимые. Необратимыми называются такие усилители, в которых вся нагрузка, приложенная к выходному звену (например, шарнирный момент руля), преодолевается силовым узлом и на ручку управления не передается. Для создания на ручке «чувства» управления производится искусственное нагружение ручки с помощью специальных устройств. Простейшими из них являются пружины с линейной зависимостью усилия от отклонения ручки. Однако такие устройства редко удовлетворяют пилотов, поскольку они, создавая на органах управления одинаковые усилия как при минимальной, так и при максимальной скорости полета, легко могут стать причиной опасной перегрузки самолета при маневре.




Преимущественное распространение получили нагрузочные автоматы, создающие усилие в зависимости от величины скоростного напора и угла отклонения поверхности управления. Такие нагрузочные автоматы, а также некоторые специальные нагрузочные устройства в сочетании с необратимыми усилителями позволяют выбрать наилучшие характеристики управляемости для любого самолета.

Необратимые системы применяются в основном при больших нагрузках на органах управления и в тех случаях, когда нет необходимости создавать на ручке ощущения нагрузки выхода, как, например, в случае управления передним колесом самолета.

На некоторых самолетах, в частности на легких, получили распространение обратимые системы управления, в которых обеспечивается передача известной части аэродинамических нагрузок, действующих на рули, на ручку управления. Подобное управление с пропорциональной чувствительностью на ручке управления уменьшает возможность перегружения конструкции при различных эволюциях самолетов. Кроме того, обеспечивается без центрирующих устройств и вмешательства пилота возвращение свободных рулей в нейтральное положение, что имеет большое значение для сохранения устойчивости самолета.

Обычно на реактивных самолетах, оборудованных обратимой бустерной системой, естественный градиент усилий на рычагах управления получается только в средней части диапазона скоростей: при больших скоростях управление кажется «тяжелым», а при малых - «легким». Этот недостаток устраняется нагрузочным устройством.

Нагрузка от шарнирного момента может быть передана на ручку либо при помощи соответствующей кинематики рычажной системы обратной связи, либо гидравлическим способом.

На рис. 71, а изображена одна из схем необратимого гидроусилителя с двигателем (цилиндром) прямолинейного движения. Перемещение ручки управления 1 вызывает движение тяги 2, которая через рычаг 3, поворачивающийся относительно точки а, сместит золотник 4, запирающий пути подвода и слива жидкости, в сторону отклонения ручки 1. В результате жидкость под давлением поступит в соответствующую полость цилиндра 6, будет перемещать его поршень 7 и отклонять рулевую поверхность 8. Переместившийся золотник открывает также каналы для слива жидкости из нерабочей полости цилиндра 6. Если движение ручки 1 будет прекращено, то точка с станет неподвижной и перемещающийся поршень 7 через рычаг 3 сообщит золотнику 4 перемещение, противоположное тому, которое он получал при отклонении ручки 1.

В результате этого количество жидкости, поступающей в цилиндр, будет уменьшаться до тех пор, пока в среднем положении золотника 4 поступление масла не прекратится и скорость поршня станет равной нулю. При смещении золотника в противоположную сторону движение всех элементов регулирующего устройства будет происходить в противоположном направлении.

Механические упоры 5, ограничивающие максимальное отклонение золотника, уменьшают максимальную ошибку, которая может быть введена в систему. Если пилот попытается после того как будет выбран этот свободный ход сдвинуть рычаг со скоростью, превышающей максимальную скорость штока, то развиваемое ручкой усилие складывается с усилием давления жидкости.

На рис. 71, б изображена схема обратимой системы управления рулем самолета с гидравлическим нагружением ручки управления. Гидравлическое нагружение ручки управления осуществляется с помощью нагрузочного цилиндра а, поршень которого через механизм обратной связи воздействует на ручку. Полости нагрузочного цилиндра соединены с соответствующими полостями основного силового цилиндра: значение нагрузки на ручку определяется площадью поршня цилиндра а, величиной давления жидкости и размерами плеч n и k дифференциального рычага обратной связи.

Для того чтобы находящаяся в силовом цилиндре усилителя жидкость не препятствовала ручному управлению, обе полости цилиндра сообщаются между собой через обводной клапан. При наиболее опасных повреждениях, например заеданиях золотникового распределителя, усилитель должен автоматически отключаться от системы управления для предотвращения ее заклинивания.

Если отказ усилителя произойдет при такой эволюции самолета, когда на рули действует большая нагрузка, то в момент перехода на ручное управление усилия на командных рычагах могут превзойти усилия пилота. Это приведет к произвольному отклонению руля, в результате которого самолет может попасть в опасные условия полета прежде, чем руль будет возвращен в нужное положение. Наилучшим способом устранения такой опасности является непрерывная балансировка шарнирного момента руля при помощи автоматического триммера, независимо от того, включен или выключен усилитель. Для создания «чувства управления» система с автоматическим триммером должна иметь какое-либо нагрузочное приспособление. Для удобства перехода с бустерного управления на ручное в современных обратимых системах принято делить нагрузки между пилотом и усилителем в отношении 1: 3.

С распространением систем управления с усилителями в них появились новые гидравлические, электрические и сложные механические устройства. Помимо возросшей конструктивной сложности, управление теперь стало зависеть от ряда других самолетных систем. Возникли серьезные практические затруднения в обеспечении надежности управления.

Повышение надежности системы усилителей достигается главным образом путем дублирования отдельных элементов, возможность выхода которых из строя наиболее вероятна, а также путем полного дублирования усилительных установок. Усилители снабжаются устройствами для локализации поврежденных агрегатов с автоматическим переключением их на исправные резервные агрегаты. Одновременно улучшаются аварийные системы перехода на ручное управление в случае полного отказа системы. Применяется также секционирование поверхностей управления с приводом каждой секции от автономной бустерной установки.

Несмотря на ряд улучшений в системах управления с усилителями, применение дублированных гидросистем, преимущество в отношении надежности и веса еще остается за ручной системой управления с аэродинамической компенсацией. Поэтому при проектировании нового самолета с умеренной скоростью (околозвуковой) полета весьма важен правильный выбор системы управления. Особое значение это имеет для пассажирских самолетов. Многие современные пассажирские самолеты имеют ручное управление. Обычное ручное управление с тросовой и жесткой проводкой можно использовать до чисел М = 0,9 даже на самолетах большой грузоподъемности при условии применения внутренней аэродинамической компенсации или пружинных сервокомпенсаторов. Однако на практике для управления во всем диапазоне скоростей полета необходимы некоторые дополнительные устройства: вспомогательные элероны или интерцепторы для улучшения поперечной управляемости при малых скоростях полета;

управляемый стабилизатор для сохранения продольной устойчивости и парирования изменения продольного наклона самолета при больших числах М.

Повышение экономичности транспортных самолетов в настоящее время достигается увеличением размеров самолета и его взлетного веса, который уже сейчас приближается к 450 Т. Следует заметить, что моменты, создаваемые поверхностями управления по мере увеличения веса самолета, становятся все менее эффективными по сравнению с моментами инерции конструкции, поэтому реакция самолета на отклонения поверхностей управления становится неприемлемо малой. В связи с этим можно ожидать в будущем коренных изменений методов управления большими самолетами.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Если вы хотите безопасно (и законно) управлять самолетом, вам необходимо получить летное свидетельство пилота. Но если вы думаете, что однажды окажетесь в чрезвычайной ситуации, или вам просто любопытно, как все работает, умение управлять самолетом может оказаться очень кстати. Эта задача не из простых, а полное руководство займет несколько сотен страниц. Эта статья поможет вам понять, с чем вы столкнетесь во время первых тренировочных полетов.

Шаги

Знакомство с системой управления

    Осмотрите самолет, прежде чем подняться на борт. До взлета важно провести осмотр самолета. Это визуальная оценка самолета, которая позволяет убедиться, что все детали судна находятся в рабочем состоянии. Инструктор выдаст вам список действий, которые вам нужно будет совершать как во время полета, так и до его начала. Крайне важно следовать этим правилам. Ниже мы приводим основные правила осмотра самолета до начала полета.

    • Проверьте контрольные поверхности. Уберите контрольные замки. Убедитесь, что элероны, закрылки и руль направления двигаются плавно, что им ничего не мешает.
    • Осмотрите бензобаки и резервуары с маслом. Проверьте, чтобы они были заполнены до нужного уровня. Для измерения уровня топлива вам понадобится топливомерный щуп. Для измерения уровня масла в моторном отсеке есть масломерный щуп.
    • Проверьте топливо на наличие загрязняющих веществ. Для этого небольшое количество топлива помещают в специальный стеклянный контейнер и смотрят на наличие в образце воды или грязи. Инструктор покажет вам, как это сделать.
    • Заполните бланки по допустимому весу на борту и по распределению нагрузки в самолете. Это позволит не допустить перегрузки самолета. Опять-таки, инструктор объяснит вам, как это сделать.
    • Проверьте корпус самолета на наличие сколов, трещин и прочих повреждений. Повреждения, особенно на лопастях пропеллеров, могут повлиять на поведение самолета в воздухе. До взлета всегда проверяйте состояние пропеллеров и воздухозаборных устройств. Приближайтесь к пропеллерам с осторожностью. Если в проводке самолета есть повреждения, пропеллер может самопроизвольно начать вращаться, что приведет к серьезной или даже смертельной травме.
    • Проверьте аварийные запасы. Конечно, думать об этом не хочется, однако нужно всегда учитывать возможность аварии. Проверьте запасы еды, воды, аптечку, а также наличие рации, фонарика и батареек. Вам также может понадобиться оружие и стандартные запчасти для ремонта.
  1. Найдите штурвал. Когда вы займете свое место в кресле пилота, вы увидите перед собой сложную панель управления, однако вам будет проще разбираться в ней, когда вы поймете, за что отвечает каждое из устройств. Прямо перед вами будет находиться длинный рычаг, напоминающий руль. Это штурвал.

    • Штурвал выполняет ту же роль, что и руль в машине - он задает положение носа самолета (вверх и вниз) и наклон крыльев. Попробуйте подержаться за штурвал. Нажмите на него от себя, затем потяните к себе, поводите влево и вправо. Не тяните за него слишком сильно – достаточно небольших движений.
  2. Найдите газ и устройство управления горючей смесью. Обычно эти кнопки находятся между сидениями в кабине пилота. Кнопка газа черная, а кнопка управления горючей смесью обычно красная. В гражданской авиации эти инструменты управления обычно выполнены в виде обычных кнопок.

    • Впуск топлива управляется кнопкой газа, а за управление горючей смесью отвечает вторая кнопка.
  3. Найдите инструменты управления полетом. В большинстве самолетов их шесть, и они расположены в два ряда горизонтально. Эти инструменты показывают высоту над уровнем морем, пространственное положение воздушного судна, курс и скорость (как набора высоты, так и снижения).

    • Вверху слева: указатель воздушной скорости . Он показывает скорость судна в узлах. (Узел равен одной морской миле в час, или примерно 1,85 км/ч.)
    • Вверху посередине: указатель пространственного положения (искусственный горизонт). Он показывает пространственное положение самолета, то есть его угол наклона вверх или вниз, влево или вправо.
    • Вверху справа: альтиметр (высотомер). Он показывает высоту над уровнем моря.
    • Внизу слева: указатель поворота и скольжения . Это комбинированный инструмент, который показывает угол поворота самолета относительно вертикальной оси, угол крена и скольжения относительно продольной оси (не летит ли самолет боком).
    • Внизу посередине: указатель курса . Он показывает текущий курс судна. Этот инструмент калибруют (обычно каждые 15 минут), приводя его в соответствие с компасом. Это делается на земле или в воздухе, но только во время полета по прямой с постоянной высотой .
    • Внизу справа: указатель скорости набора высоты . Он показывает, с какой скоростью самолет набирает или сбрасывает высоту. Ноль означает, что самолет летит на постоянной высоте.
  4. Найдите инструменты управления посадкой. На многих маленьких самолетах установлены фиксированные передачи, и в этом случае рычага управления передачей для посадки не будет. Если же в вашем самолете предусмотрена возможность ручного переключения передач, соответствующий рычаг может иметь любое расположение. Как правило, это рычаг с белой рукояткой. Вы будете использовать его при взлете, посадке и при движении самолета по земле. Помимо выполнения прочих функций, этот рычаг управляет шасси, лыжами и поплавками самолета.

    Поставьте ноги на педали поворота. У вас под ногами будут педали, с помощью которых можно задавать поворот. Они прикреплены к вертикальному стабилизатору. Если вам нужно слегка повернуть налево или направо по вертикальной оси, используйте педали. Фактически педали задают поворот относительно вертикальной оси. Они также отвечают за повороты на земле (многие начинающие пилоты считают, что направление движения на земле задается штурвалом).

    Взлет

    1. Получите разрешение на взлет. Если вы находитесь в аэропорту с диспетчерской, до начала движения по земле вам нужно связаться с диспетчером. Вам дадут всю необходимую информацию, включая код приемоответчика. Запишите его, поскольку эту информацию нужно будет повторить для диспетчера, прежде чем вам дадут разрешение на взлет. Когда разрешение будет получено, начинайте движений к взлетной полосе в соответствии с инструкциями сотрудников наземной службы. Никогда не выезжайте на взлетную полосу без разрешения на взлет!

      Настройте закрылки для взлета. Как правило, они должны располагаться под углом 10 градусов. Закрылки позволяют создать подъемную силу, из-за чего они и используются при взлете.

      Проверьте работу двигателей. Перед выездом на взлетную полосу остановитесь в зоне проверки двигателей и произведите соответствующую процедуру проверки. Так вы убедитесь, что взлетать безопасно.

      • Попросите инструктора показать, как производится проверка двигателей.
    2. Сообщите диспетчеру, что вы готовы к взлету. После успешной проверки двигателей сообщите диспетчеру о готовности и ждите разрешения продолжать движение по взлетной полосе.

    3. Вдавите кнопку управления горючей смесью максимально вниз. Начните постепенно давить на кнопку газа – самолет станет разгоняться. Он захочет повернуть влево, поэтому удерживайте его в середине взлетной полосы с помощью педалей.

      • При боковом ветре вам нужно будет слегка повернуть штурвал в сторону ветра. Когда наберете скорость, постепенно верните штурвал к исходному положению.
      • Отклонение от курса (кручение вокруг по вертикальной оси) нужно контролировать с помощью педалей. Если самолет начнет кручение, используйте педали, чтобы его выровнять.
    4. Разгонитесь. Чтобы подняться в воздух, самолету нужно набрать определенную скорость. Газ должен быть выжат до конца, и тогда самолет начнет подниматься (обычно у небольших самолетов скорость взлета равняется примерно 60 узлам). Указатель воздушной скорости сообщит вам, когда вы достигнете этой скорости..

      • Когда возникнет необходимая подъемная сила, нос самолета начнет подниматься над землей. Потяните за штурвал, чтобы помочь самолету взлететь.
    5. Потяните штурвал на себя. Это позволит самолету подняться в воздух.

      • Не забывайте поддерживать скорость набора высоты и правильное положение руля направления.
      • Когда самолет поднимется на достаточную высоту и когда указатель скорости набора высоты будет показывать положительное значение (то есть самолет будет набирать высоту), верните закрылки и шасси в нейтральное положение, чтобы снизить сопротивление.

    Управление полетом

    1. Установите искусственный горизонт, или указатель пространственного положения. Он поможет вам удерживать самолет в горизонтальном положении. Если вы выйдете за нужные значения, потяните штурвал на себя, чтобы приподнять нос. Не дергайте слишком резко – здесь не нужно больших усилий.

      • Чтобы самолет не отклонялся от горизонта, постоянно проверяйте пространственное положение и показания альтиметра. Но помните, что слишком долго смотреть на тот или иной указатель не стоит.
    2. Выполните поворот. Это еще называется выполнением виража. Если перед вами штурвал, поверните его. Если он имеет вид рукоятки, наклоните ее влево или вправо. Чтобы не потерять управление, смотрите на указатель поворота. Этот инструмент отображает картинку маленького самолета, на которую накладывается уровень с черным шариком. Нужно, чтобы черный шарик оставался в середине – корректируйте положение самолета педалями, и тогда все ваши повороты будут плавными и аккуратными.

      • Чтобы лучше запомнить, какую педаль нажимать, представьте, что вы наступаете на шарик.
      • Элероны отвечают за угол крена. Они работают вместе с педалями поворота. При повороте скоординируйте педали с элеронами, чтобы хвост оставался позади носа. Всегда следите за высотой и воздушной скоростью.
        • При повороте штурвала влево левый элерон приподнимается, а правый опускается. При правом повороте правый элерон поднимается, а левый опускается Не слишком задумывайтесь о том, как это происходит с точки зрения механики и аэродинамики; сейчас вы знакомитесь с основами.
    3. Управляйте скоростью самолета. У каждого самолета есть настройки двигателя, оптимизированные под крейсерский режим полета. Когда наберете нужную высоту, измените настройки так, чтобы двигатель работал на 75% мощности. Скорректируйте настройки для постоянного горизонтального полета. Вы почувствуете, что все рычаги начнут двигаться более плавно. На некоторых самолетах эти настройки позволяют перевести самолет в режим, не создающий вращающего момента, при котором для удержания самолета на прямой линии не потребуется управление педалями.

      • При стопроцентной загрузке двигателя нос смещается в сторону из-за вращающего момента, создаваемого двигателем, который требует коррекции с помощью педалей, поэтому чтобы вернуть самолет в нужное положение, приходится направлять его в противоположную сторону.
      • Чтобы самолет удерживал положение в пространстве, необходимо обеспечивать необходимую скорость и подачу воздуха. Если самолет будет лететь слишком медленно или под крутым углом, он может потерять необходимое ему обтекание воздушным потоком и замереть. Это особенно опасно при взлете и посадке, однако за скоростью следует следить всегда.
      • Как и при управлении машиной, чем чаще вы выжимаете газ в пол, тем большей нагрузке это подвергает двигатель. Жмите на газ лишь в том случае, если вам надо набрать скорость, и отпускайте газ, чтобы снижаться без ускорения.
    4. Не злоупотребляйте управлением. Во время турбулентности важно не переборщить с корректировками, иначе можно случайно вынудить самолет работать на пределе возможностей, что приведет к повреждениям оборудования (в случае сильной турбулентности).

      • Другой проблемой может стать обледенение карбюратора. Вы увидите кнопку с надписью "обогрев карбюратора" ("carb heat"). Включайте обогрев на короткие промежутки времени (например, на 10 минут), особенно при высокой влажности, которая вызывает обледенение. (Это касается лишь самолетов с карбюратором.)
      • Не переключайте свое внимание на эту задачу целиком – вам нужно все время следить за всеми приборами и проверять наличие летающих объектов вблизи вашего самолета.
    5. Установите крейсерскую скорость двигателя. Когда скорость выровняется, зафиксируйте элементы управления в их текущем положении, чтобы самолет постоянно двигался с той же скоростью, а вы могли бы контролировать курс. Снизьте нагрузку на двигатель до 75%. Если вы пилотируете самолет Cessna с одним двигателем, рекомендуемая нагрузка составит 2400 оборотов в минуту.

      • Установите триммер. Триммер – это небольшое устройство на панели, которое можно перемещать в кабине. Правильная установка триммера позволяет не допустить подъема или снижения при крейсерском полете.
      • Существуют разные типы триммеров. Одни имеют форму колеса или рычага, другие – ручки, которую нужно тянуть, или качалки. Есть также триммеры в виде винта и троса. Существуют также электрические системы, управлять которыми проще всего. Настройки триммера соответствуют определенным скоростям, которых может придерживаться самолет. Обычно они зависят от веса, строения корабля, центра тяжести и веса груза и пассажиров.

Вознаграждайте за достижение стандарта.

Если руководство органи­зации хочет, чтобы сотрудники были мотивированы на полную самоотдачу в интере­сах организации, оно должно справедливо вознаграждать их за достижение установленных стандартов результативности. Согласно теории ожидания существу­ет четкая взаимосвязь между результативностью и вознаграждением. Если работни­ки не ощущают такой связи или чувствуют, что вознаграждение несправедливо, то их производительность в будущем может упасть.

1. Какова роль контроля в управлении?

2. Каковы основные типы контроля с точки зрения времени их осуществления по отношению к выполняемой работе?

3. Что такое контроль с использованием обратной связи?

4. На какие этапы распадается процесс контроля?

5. Чем характеризуется эффективный контроль?

6. Почему менеджер должен учитывать поведенческие аспекты контроля?

Система управления самолета - одна из основных и важных бортовых систем, во многом определяющая эксплуатационные и тактические возможности самолета, включая безопасность его полета. Она представляет собой сложный комплекс электронно-вычислительных, электрических, гидравлических и механических устройств, в совокупности обеспечивающих необходимые характеристики устойчивости и управляемости самолета, стабилизацию установленных летчиком режимов полета, программное автоматическое управление самолетом на всех режимах полета от взлета до посадки.

Основной задачей системы управления является осуществление отклонения рулевых поверхностей по командным сигналам летчика, систем автоматического управления и других систем, формирующих отклонение рулей по определенным законам.

В развитии систем управления можно выделить три основных этапа, существенно повлиявших на их структуру и открывших большие возможности в создании высокоманевренных сверхзвуковых и тяжелых самолетов.

I. Создание систем управления с обратимыми и необратимыми гидравлическими приводами (бустерами) с переходом на безбустерное управление при отказе гидропитания.

II. Создание необратимого бустерного управления (НБУ) без перехода на непосредственное ручное управление. НБУ позволило обеспечить летчику приемлемые характеристики устойчивости и управляемости во всем диапазоне режимов полета независимо от действующих аэродинамических шарнирных моментов на рулях, значения которых во много раз превышают физические возможности летчика. Этот этап обеспечил широкое внедрение автоматических систем управления.

III. Развитие и внедрение резервированных электродистанционных систем управления (СДУ), работающих совместно с механической дистанционной системой (МСУ) с возможностью полной замены МСУ на СДУ и введением на этой основе автоматических систем, обеспечивающих многорежимность полета современного самолета, включая полеты на малой высоте (до 30...50 м), полеты в трансзвуковой области и др.



Внедрение СДУ позволило достаточно просто ввести активные системы управления, к которым относятся системы: искусственной устойчивости самолета; снижения маневренных нагрузок на конструкцию самолета; непосредственного управления подъемной и боковой силами; ослабления воздействия турбулентности атмосферы; демпфирования упругих колебаний конструкции; ограничения предельных режимов полета и т.д.

О влиянии активных систем управления на самолет свидетельствует тот факт, что его конфигурация «активные» системы подчеркивает отличие положенных в основу новых методов от прежних, пассивных методов обеспечения необходимых характеристик. Реализация концепции активного управления позволяет обеспечить полеты на неустойчивом самолете, улучшить его маневренные характеристики, а также комфортные условия для экипажа и пассажиров, повысить ресурс планера, существенно снизить массу самолета и т.д. Внедрение активных систем можно отнести к IV этапу развития систем управления самолета.

Деление на рассмотренные этапы развития систем управления достаточно условно. Ниже рассмотрены вопросы построения систем управления рулями, их структурные схемы и основные элементы. Основное внимание уделено общим особенностям управления. Структуры систем управления по тангажу, крену, курсу имеют много общего, поскольку НБУ строятся на одних и тех же принципах и не выделяются отдельно

1.1.ОРГАНЫ УПРАВЛЕНИЯ САМОЛЕТОМ

На современных самолетах для создания управляющих моментов применяют в основном органы управления трех видов - аэродинамические, струйные и в виде управляемой передней стойки шасси (рис. 1.1).

Органы управления, использующие струйные рули или отклонение вектора тяги для создания управляющей силы (момента), требуют значительных энергоресурсов. Струйные органы управления используются на малых или нулевых скоростях полета, а также на очень больших высотах. При пробеге по земле эффективным органом путевого управления является управляемая передняя стойка шасси, с помощью которой обеспечивается управление самолетом на взлетно-посадочной полосе и осуществляется рулежка на аэродроме. При отказе управления передней стойки шасси в качестве аварийного режима возможно использование дифференциального торможения колес основных стоек шасси.

Продольное управление самолетом может осуществляться следующими органами управления (табл. 1.1): управляемым цельноповоротным и дифференциальным стабилизаторами, передним оперением, элевонами, вектором тяги, комбинацией перечисленных органов управления.

Самолёты схемы «утка», у которых органом продольного управления является переднее горизонтальное оперение (ПГО), имеют эффективность продольного управления, близкую к самолетам нормальной схемы.

Элевоны традиционно использовались для продольного и поперечного управления на самолетах "бесхвостой" схемы. Однако эти органы управления, расположенные по задней кромке крыла (в том числе элероны, флапероны), теряют значительную часть эффективности при полете самолета на сверхзвуковых скоростях.

На современных самолетах основной системой управления является НБУ, которая обеспечивает приемлемый уровень усилий при управлении самолетом путем применения специальных устройств их имитации независимо от характера действующего шарнирного аэродинамического момента М ш.аэр на органе управления. Современные самолеты имеют органы управления в основном с конструктивной компенсацией или без компенсации вообще (например, Су-27, F-104, F-4 и др.).

Таблица 1.1

Тип органа управления Канал управления
по тангажу по крену по курсу подъемной силой торможением
Управляемое ГО (переднее и заднее) Дифференциальное ГО Концевые рули Элевоны Элероны Флапероны Интерцепторы (спойлеры) Предкрылки Поворотные концевые консоли крыла Закрылки Изменение стреловидности крыла Руль направления Управляемое ВО Поворотный форкиль (гребень) Струйные рули Управление вектором тяги Управление передней стойкой Расщепляющиеся рули Носовые рули Адаптивное крыло Тормозные щитки Реверс тяги Тормоза колес шасси

Это создает определенные проблемы по обеспечению безопасности от рулевых форм флаттера. Эти проблемы решаются выбором необходимых характеристик динамической жесткости рулевых приводов, обеспечивая нужный уровень собственной частоты колебаний рулевой поверхности и ее демпфирования.

Углы отклонения элевонов обычно δ эв <±25°. Этот диапазон углов распределяется между каналами тангажа и крена. При наличии автоматики к сигналам ручного управления добавляются также сигналы автомата системы устойчивости и управляемости (СУУ) по тангажу и крену.

На сверхзвуковых самолетах обычной схемы основным органом продольного управления является управляемый стабилизатор, состоящий из двух консолей, каждая из которых крепится на опоре, обеспечивающей независимый поворот консоли относительно ее оси вращения с помощью отдельного привода (рис.1.2). Такая конструкция позволяет осуществить как синхронное отклонение консолей, если стабилизатор используется в качестве органа продольного управления, так и дифференциальное, если стабилизатор одновременно применяется для управления по крену.

На неманевренных самолетах чаще используется единая (неразрезная) конструкция, которая целиком поворачивается относительно узлов навески, закрепленных внутри фюзеляжа. Весовая отдача стабилизатора такой конструкции лучше, но его использование возможно только для продольного управления.

Для уменьшения потребной тяги приводов стабилизатора положение его оси желательно выбирать внутри диапазона перемещения фокусов стабилизатора. В результате на дозвуковых режимах полета стабилизатор будет перекомпенсирован по М ш.кр. Для самолетов с НБУ такая ситуация вполне допустима. Однако с точки зрения безопасности полета на режимах перекомпенсации стабилизатора необходимо предусмотреть, чтобы запасы по тяге приводов были в 1,25-1,5 раза больше, чем на режимах, на которых стабилизатор скомпенсирован на случай возможных отказов в системе управления (например, одной из гидросистем).

Для управления стабилизаторами требуются очень мощные рулевые приводы (так, для ряда самолетов, развиваемые силы двухкамерных приводов одной консоли стабилизатора составляют; 550 кН для F-14; 453,6 кН для F-111; 314 кН для "Торнадо"). Тяга приводов стабилизаторов самолетов превышает их собственный взлетный вес. Естественно, для установки приводов с такой тягой, на самолете требуется мощная силовая конструкция каркаса, которая бы исключала просадку привода под нагрузкой. При прямой оси проще обеспечить жесткость конструкции силовой передачи.

Шасси самолета

Шасси самолета предназначено для обеспечения стоянки и движения самолета по поверхности аэродрома. Основными элементами шасси являются:амортизатор, колеса, подкосы и замки, фиксирующие стойку. Амортизаторы поглощают энергию ударов при посадке самолета и при движении по земле. Колеса основных опор самолета оснащаются дисковыми тормозами, обеспечивающими торможение самолета при его пробеге и рулении на земле. Имеется еще автомат юза на большинстве современных самолетов. Наибольшее распространение в настоящее время имеют шасси с передней опорой.

Системы управления самолетом разделяются на основные и дополнительные.

К основным относят системы управления рулем высоты, рулем направления и элеронами, которые состоят из командных рычагов и проводки, соединяющей их с рулями.

Управление рулем высоты осуществляется штурвальной колонкой, отклонением ее вперед – назад, управление элеронами – отклонением штурвала штурвальной колонки влево – вправо, управление рулем направления – ножными педалями.

Конструкцией системы управления предусматривается соответствие отклонения командных рычагов и изменения направления полета естественным рефлексам человека. Например, правая педаль отклоняется от себя – руль направления отклоняется вправо и самолет делает поворот вправо, при взятии штурвальной колонки на себя (назад) руль высоты отклоняется вверх и самолет переходит в набор высоты. При повороте штурвала влево левый элерон отклоняется вверх, а правый – вниз и самолет входит в левый крен. Для повышения безопасности полетов управление дублировано, т.е. командные рычаги имеются у командира ВС и у второго пилота. Проводка систем управления может быть гибкой, жесткой, смешанной. Гибкая проводка выполняется из тонких стальных тросов (диаметром 6 …8 мм), жесткая представляет собой систему трубчатых тяг и качалок, смешанная проводка включает и тросы, и трубчатые тяги.

При полете на большой скорости усилия на командные рычаги возрастают и могут превышать физические возможности человека. Для снятия нагрузки с командных рычагов в контур системы управления включают усилители (электрические или гидравлические), которые называют бустерами. В этих случаях пилот управляет бустерами при небольших усилиях, а бустера уже, в свою очередь, управляют органами управления.

В контур систем управления транспортных самолетов включается автоматический пилот (автопилот), который используется по решению экипажа. Автопилот обеспечивает управление и полет по заданной траектории.

К дополнительным системам относятся системы управления средствами механизации крыла, шасси, двигателями, триммерами рулей и т.д.


Для управления средствами механизации крыла (закрылками, щитками, предкрылками и др.) и шасси физической силы экипажа недостаточно. Поэтому в системы управления включают внешние источники энергии: электрические, гидравлические, пневматические. Выбор источника энергии зависит от конкретных требований к системам. Источники энергии, соединенные с потребителями, составляют соответствующие системы (гидравлические, электрические, пневматические и др.).

Гидравлическая система представляет собой совокупность механизмов и устройств, соединенных трубопроводами, и предназначена для передачи энергии на расстояние с помощью жидкости. Гидросистемы используются для уборки и выпуска шасси, для поворота колес передней опоры шасси, управления средствами механизации и т.п.

Рабочее давление в гидросистеме создается гидронасосами, установленными на двигателях, и достигает 20000 кПа и более.

Для повышения энергоемкости в системе устанавливают гидроаккумуляторы, а для уменьшения величины пульсаций давления, возникающих при работе насосов - гасители пульсаций. Это особенно важно при уборке шасси и взлете с отказавшим двигателем, так как в этом случае время уборки шасси уменьшается, а следовательно, уменьшается и лобовое сопротивление. В результате вертикальная скорость набора высоты увеличивается, что обеспечивает безопасность полета с отказавшим двигателем.

Действие гидросистемы в полете происходит следующим образом. Рабочая жидкость из бака по линии всасывания поступает к насосам, от которых под рабочим давлением поступает к фильтру тонкой очистки, а от него – к кранам потребителей. При этом происходит зарядка гидроаккумуляторов и гасителей пульсаций.

При включении соответствующего крана потребителя (например, уборки шасси) жидкость подается в рабочую полость гидроцилиндров уборки шасси, а из противоположных полостей жидкость поршнем выталкивается по линии слива в бак. В результате перемещения штока гидроцилиндров происходит уборка шасси.

Пневматические системы аналогичны гидросистемам, только в качестве рабочего тела используется газ (азот, воздух).

Самолёт – воздушное судно, без которого сегодня представить перемещение людей и грузов на большие расстояния невозможно. Разработка конструкции современного самолета, а также создание отдельных его элементов представляется важной и ответственной задачей. К этой работе допускают только высококвалифицированных инженеров, профильных специалистов, так как небольшая ошибка в расчётах или производственный брак приведут к фатальным последствиям для пилотов и пассажиров. Не представляет секрет, что любой самолёт имеет фюзеляж, несущие крылья, силовой агрегат, систему разнонаправленного управления и взлетно-посадочные устройства.

Ниже изложенная информация об особенностях устройства составных частей самолёта будет интересна для взрослых и детей, занимающихся конструкторской разработкой моделей летательных аппаратов, а также отдельных элементов.

Фюзеляж самолёта

Основной частью самолета является фюзеляж. На нем закрепляются остальные конструктивные элементы: крылья, хвост с оперением, шасси, а внутри размещается кабина управления, технические коммуникации, пассажиры, грузы и экипаж воздушного судна. Корпус самолёта собирается из продольных и поперечных силовых элементов, с последующей обшивкой металлом (в легкомоторных версиях – фанерой или пластиком).

Требования при проектировании фюзеляжа самолёта предъявляется к весу конструкции и максимальным характеристикам прочности. Добиться этого позволяет использование следующих принципов:

  1. Корпус фюзеляжа самолёта выполняется в форме, снижающей лобовое сопротивление воздушным массам и способствующей возникновению подъемной силы. Объем, габариты самолёта должны быть пропорционально взвешены;
  2. При проектировании предусматривают максимально плотную компоновку обшивки и силовых элементов корпуса для увеличения полезного объема фюзеляжа;
  3. Сосредотачивают внимание на простоте и надежности крепления крыловых сегментов, взлётно-посадочного оборудования, силовой установки;
  4. Места крепления грузов, размещения пассажиров, расходных материалов должны обеспечивать надёжное крепление и баланс самолёта при различных условиях эксплуатации;

  1. Место размещения экипажа должно предоставлять условия комфортного управления самолётом, доступ к основным приборам навигации и управления при экстремальных ситуациях;
  2. В период обслуживания самолёта предусмотрена возможность беспрепятственно провести диагностику и ремонт вышедших из строя узлов и агрегатов.

Прочность корпуса самолёта обязана обеспечивать противодействие нагрузкам при различных полётных условиях, в том числе:

  • нагрузки в местах крепления основных элементов (крылья, хвост, шасси) в режимах взлёта и приземления;
  • в полётный период выдерживать аэродинамическую нагрузку, с учётом инерционных сил веса самолёта, работы агрегатов, функционирования оборудования;
  • перепады давления в герметически ограниченных отделах самолёта, постоянно возникающие при лётных перегрузках.

К основным типам конструкции корпуса самолёта относят плоский, одно,- и двухэтажный, широкий и узкий фюзеляж. Положительно зарекомендовали себя и используются фюзеляжи балочного типа, включающие варианты компоновки, которые носят название:

  1. Обшивочные – конструкция исключает продольно расположенные сегменты, усиление происходит за счёт шпангоутов;
  2. Лонжеронные – элемент имеет значительные габариты, и непосредственная нагрузка ложится именно на него;
  3. Стрингерные – имеют оригинальную форму, площадь и сечение меньше, чем в лонжеронном варианте.

Важно! Равномерное распределение нагрузки на все части самолёта осуществляется за счёт внутреннего каркаса фюзеляжа, который представлен соединением различных силовых элементов по всей длине конструкции.

Конструкция крыла

Крыло – один из основных конструктивных элементов самолёта, обеспечивающий создание подъёмной силы для полёта и маневрирования в воздушных массах. Крылья используют для размещения взлётно-посадочных устройств, силового агрегата, топлива и навесного оборудования. От правильного сочетания веса, прочности, жёсткости конструкции, аэродинамики, качества изготовления зависят эксплуатационные и лётные характеристики самолёта.

Основными частями крыла называется следующий перечень элементов:

  1. Корпус, сформированный из лонжеронов, стрингеров, нервюров, обшивки;
  2. Предкрылки и закрылки, обеспечивающие плавный взлёт и посадку;
  3. Интерцепторы и элероны – посредством них осуществляется управление самолётом в воздушном пространстве;
  4. Щитки тормозные, предназначенные для уменьшения скорости движения во время посадки;
  5. Пилоны, необходимые для крепления силовых агрегатов.

Конструктивно-силовая схема крыла (наличие и расположение деталей при нагрузочном воздействии) должна обеспечивать устойчивое противодействие силам кручения, сдвига и изгиба изделия. К ней относятся продольные, поперечные элементы, а также внешняя обшивка.

  1. К поперечным элементам относят нервюры;
  2. Продольный элемент представлен лонжеронами, которые могут быть в виде монолитной балки и представлять ферму. Располагаются по всему объёму внутренней части крыла. Участвуют в придании жёсткости конструкции, при воздействии сгибающей и поперечной силы на всех этапах полёта;
  3. Стрингер также относят к продольным элементам. Его размещение – вдоль крыла по всему размаху. Работает как компенсатор осевого напряжения нагрузок изгиба крыла;
  4. Нервюры – элемент поперечного размещения. В конструкции представлены фермами и тонкими балками. Придаёт профиль крылу. Обеспечивает жесткость поверхности при распределении равномерной нагрузки во время создания полётной воздушной подушки, а также крепления силового агрегата;
  5. Обшивка придаёт форму крылу, обеспечивая максимальную аэродинамическую подъёмную силу. Вместе с другими элементами конструкции увеличивает жёсткость крыла и компенсирует действие внешних нагрузок.

Классификация крыльев самолёта осуществляется в зависимости от конструктивных особенностей и степени работы наружной обшивки, в том числе:

  1. Лонжеронного типа. Характеризуются незначительной толщиной обшивки, образующей замкнутый контур с поверхностью лонжеронов.
  2. Моноблочного типа. Основная внешняя нагрузка распределяется по поверхности толстой обшивки, закреплённой массивным набором стрингеров. Обшивка может быть монолитной или состоять из нескольких слоёв.

Важно! Стыковка частей крыльев, последующее их крепление должны обеспечивать передачу, распределение изгибающего и крутящего моментов, возникающих при различных режимах эксплуатации.

Авиадвигатели

Благодаря постоянному совершенствованию авиационных силовых агрегатов продолжается развитие современного самолётостроения. Первые полёты не могли быть длительными и совершались исключительно с одним пилотом именно потому, что не существовало мощных двигателей, способных развить необходимую тяговую силу. За весь прошедший период авиацией использовались следующие типы двигателей самолёта:

  1. Паровые. Принцип работы заключался в преобразовании энергии пара в поступательное движение, передающееся на винт самолёта. Из-за низкого коэффициента полезного действия использовался непродолжительное время на первых авиамоделях;
  2. Поршневые – стандартные двигатели с внутренним сгоранием топлива и передачей крутящего момента на винты. Доступность изготовления из современных материалов позволяет их использование до настоящего времени на отдельных моделях самолётов. КПД представлен не более 55.0%, но высокая надежность и неприхотливость в обслуживании делают двигатель привлекательным;

  1. Реактивные. Принцип действия основан на преобразовании энергии интенсивного сгорания авиационного топлива в необходимую для полёта тягу. Сегодня такой тип двигателей наиболее востребован в авиастроительстве;
  2. Газотурбинные. Работают по принципу пограничного нагрева и сжатия газа сгорания топлива, направленного на вращение турбинного агрегата. Получили широкое распространение в авиации военного назначения. Используются в самолётах типа Су-27, МиГ-29, F-22, F-35;
  3. Турбовинтовые. Один из вариантов газотурбинных двигателей. Но полученная при работе энергия преобразовывается в приводную для винта самолёта. Небольшая её часть используется для образования реактивной толкающей струи. Применяют, в основном, в гражданской авиации;
  4. Турбовентиляторные. Характеризуются высоким КПД. Применяемая технология нагнетания дополнительного воздуха для полного сгорания топлива обеспечивает максимальную эффективность работы и высокую экологическую безопасность. Такие двигатели нашли своё применение при создании больших авиалайнеров.

Важно! Перечень двигателей, разрабатываемых авиаконструкторами, вышеуказанным перечнем не ограничивается. В разное время неоднократно принимались попытки создавать различные вариации силовых агрегатов. В прошлом веке даже велись работы по конструированию атомных двигателей в интересах авиации. Опытные образцы были опробованы в СССР (ТУ-95, АН-22) и США (Convair NB-36H), но были сняты с испытания в связи с высокой экологической опасностью при авиационных катастрофах.

Органы управления и сигнализации

Комплекс бортового оборудования, командные и исполнительные устройства самолёта называют органами управления. Команды подаются из пилотной кабины, а выполняются элементами плоскости крыла, оперением хвоста. На разных типах самолётов используются различные типы систем управления: ручная, полуавтоматическая и полностью автоматизированная.

Органы управления, независимо от типа системы управления, разделяют следующим образом:

  1. Основное управление, включающее в себя действия, отвечающие за регулировку лётных режимов, восстановление продольного баланса самолёта в заранее заданных параметров, они включают:
  • рычаги, непосредственно управляемые пилотом (штурвал, рули высоты, горизонта, командные панели);
  • коммуникации для соединения управляющих рычагов с элементами исполнительных механизмов;
  • непосредственные исполняющие устройства (элероны, стабилизаторы, сполерные системы, закрылки, предкрылки).
  1. Дополнительное управление, используемое при взлётном или посадочном режимах.

При применении ручного или полуавтоматического управления воздушным судном пилота можно считать неотъемлемой частью системы. Только он может проводить сбор и анализ информации о положении самолёта, нагрузочных показателях, соответствии направления полёта с плановыми данными, принимать соответствующее обстановке решение.

Для получения объективной информации о лётной обстановке, состоянии узлов самолёта пилот использует группы приборов, назовем основные:

  1. Пилотажные и используемые для навигационных целей. Определяют координаты, горизонтальное и вертикальное положение, скорость, линейные отклонения. Контролируют угол атаки по отношению к встречному потоку воздуха, работу гироскопических устройств и многие не менее значимые параметры полёта. На современных моделях самолётов объединены в единый пилотажно-навигационный комплекс;
  2. Для контроля работы силового агрегата. Обеспечивают пилота информацией о температуре и давлении масла и авиационного топлива, расход рабочей смеси, количество оборотов коленчатых валов, вибрационный показатель (тахометры, датчики, термометры и подобное);
  3. Для наблюдения за функционированием дополнительного оборудования и авиационных систем. Включают в себя комплекс измерительных приборов, элементы которого размещены практически во всех конструктивных частях самолёта (манометры, указателя расходования воздуха, перепада давления в герметических закрытых кабинах, положения закрылков, стабилизирующих устройств и тому подобное);
  4. Для оценки состояния окружающей атмосферы. Основными измеряемыми параметрами являются температура наружного воздуха, состояние атмосферного давления, влажность, скоростные показатели перемещения воздушных масс. Используются специальные барометры и другие адаптированные измерительные приборы.

Важно! Измерительные приборы, используемые для мониторинга состояния машины и внешней среды, специально разработаны и адаптированы для сложных условий эксплуатации.

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.

Видео

Описанное устройство самолета даёт лишь общее представление об основных конструктивных составляющих, позволяет определить степень важности каждого элемента при эксплуатации воздушного судна. Дальнейшее изучение требует глубокой инженерной подготовки, наличия специальных знаний аэродинамики, сопротивления материалов, гидравлики и электрооборудования. На производственных предприятиях авиастроения этими вопросами занимаются люди, прошедшие обучение и специальную подготовку. Самостоятельно изучить все этапы создания самолёта можно, только для этого следует запастись терпением и быть готовым к получению новых знаний.

Рекомендуем почитать

Наверх